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Abstract-The magnitude of the vertical component of earthquake ground motion is often about
one-third of the horizontal component. Thus, it is necessary to calculate vertical dynamic charac
teristics of tall buildings and high-rise structures in design stage for certain cases. In analysing free
vibrations of tall buildings and high-rise structures, it is possible to regard such structures as a
cantilever bar with variable cross-section. In this paper, the differential equations of free longitudinal
vibrations (in vertical direction) of bars with variably distributed mass and stiffness considering
damping effect are established. The damping coefficient of a bar is assumed to be proportional to
its mass, and the general solutions of mode shapes of damped distributed parameter systems
are reduced to Bessel's equations by selecting suitable expressions, such as power functions and
exponential functions, for the distributions of stiffness and mass. An approach to determine the
natural frequencies and mode shapes in vertical direction for tall buildings with variably distributed
stiffness and variably distributed mass is proposed. The presented method is also applicable to the
free longitudinal vibration analysis without considering damping effect (damping coefficient in
vibration equations is equal to zero). A numerical example shows that the computed values of the
fundamental longitudinal natural frequency and mode shape by the proposed method are close to
the full scale measured data. It is shown through the numerical example that the selected expressions
are suitable for describing the distributions of stiffness and mass of typical tall buildings. A com
parison between undamped structural dynamic characteristics and damped natural frequencies,
mode shapes is made in this paper. © 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

All structures dissipate energy when they vibrate. Damping is a measure of the capacity of
a system to dissipate the kinetic energy associated with induced vibration, So, damping is
present to some degree in all structural systems. However, in general, the damping term in
free vibration equations is omitted and the effect ofdamping on structural natural frequency
and vibration mode shape is neglected in free vibration analysis. Although in the majority
of engineering systems this effect is small and may be disregarded, there are cases where the
effect reaches an appreciable magnitude and must be included in the analysis, for example,
it is possible that the damping factor of a controlled structure is twenty times or more
greater than that of corresponding uncontrolled structures in some cases (Soong, 1990),
Therefore, there is a need to carry out further research on the evaluation of free vibration
of structural systems considering damping effect.

In analysing free vibrations of tall buildings and high-rise structures, it is possible to
regard such structures as a cantilever bar with variable cross-section. Wang (1978) inves
tigated the free flexural vibration of a bar with variably distributed stiffness, but uniformly
distributed mass, Li et ai, (l994a, 1995) and Li (1995) studied the free flexural vibrations
of tall buildings and high-rise structures which have variably distributed stiffness and mass.
Li (1996) used several approximate computational methods to determine structural dynamic
characteristics in vertical direction for tall buildings which are treated as one-step or multi
step bars. However, the damping terms in the equations of free vibration were omitted by
these researchers. The computational method for analysis of free flexural vibrations of a
bar with variably distributed stiffness, mass and damping was proposed by Li et al. (1997).
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But, free longitudinal vibration analysis of a cantilever bar with variably distributed damp
ing, variably distributed stiffness and variably distributed mass by using analytical method
has received little, if any, attention in the literature in the past. The exact solution of this
problem has not previously been proposed in the literature. It is worth noting that it has
been recognised that the magnitude of the vertical component of ground motion is often
about one-third of the horizontal component. Wang (1978) reported that the vertical
component of ground motions has a significant effect on earthquake induced responses of
structures. Therefore, more work is thus required to determine the natural frequencies and
mode shapes in vertical direction for tall buildings with variably distributed damping,
variably distributed stiffness and variably distributed mass.

It is usually assumed that the mass of a tall building or a high-rise structure is
proportional to its stiffness (e.g., Wang, 1978; Li et al., 1994a, 1995) in free vibration
analysis. This calculation procedure is reasonable for a part of high-rise structures, but it
is not suitable for tall buildings and many high-rise structures, because the mass of floors
is 80% or even more of the total mass ofa tall building and the variation ofmass at different
floors is not significant, so, the mass distribution with height is almost constant for many
cases, suggesting that the value of mass of a tall building is not necessarily proportional to
its stiffness. This is confirmed by a series of shaking tests on buildings of various types in
which the mass and stiffness of individual buildings have been measured and reported
(leary and Sparks, 1977; Ellis and leary, 1980). In this paper, an approach to determine
the natural frequencies and mode shapes in vertical direction for tall buildings with variably
distributed damping, variably distributed stiffness and variably distributed mass, which are
treated as bars with variable cross-section, is proposed.

Although many structures may be approximated by lumped mass system, in reality all
structures are distributed mass systems having an infinite number of degrees of freedom.
In this paper, free vibrations of damped distributed mass systems which represent tall
buildings are presented and discussed.

EQUATIONS OF FREE LONGITUDINAL VIBRATIONS

The general differential equation for longitudinal (or axial) vibration of a bar with
variable cross-section considering damping effect (Fig. I) can be written as

(1)

in which y, p(x, t), K" ex and mxare the displacement in the longitudinal direction (vertical
direction), the intensity of axial force, axial stiffness, viscous damping coefficient and mass
per unit length, respectively, as section x.

x

p( x, t>

H
x

Fig. I. A cantilever bar with variable cross-section.
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If p(x, t) = 0, then eqn (1) becomes the equation of free longitudinal vibration con
sidering damping effect as follows

If set

y(x, t) = X(x) exp(At)

Then, the equation of mode shape function X(x) is given by

d 2 X dKx dX 2
K-+---+mwX=O

x dx2 dx dx x

where

(2)

(3)

(4)

(5)

(6)

It is difficult to find the exact solutions of eqn (5) for general cases, because the structural
parameters in the equation vary with the coordinate x. It is obvious that the exact solutions
are dependent on the distributions of damping, mass and stiffness. Thus, the exact solution
of eqn (5) may be obtained by means of reasonable selections for mass and stiffness
distributions. As suggested by Tuma and Cheng (1983), the functions which can be used
to approximate the variation of mass and stiffness are algebraic polynomials, exponential
functions, trigonomeric series, or their combinations. In this paper, two important cases
are considered and discussed as follows.

Case A: Expressions ofmass and axial stiffness are power functions

K x = a(1 + f3x)"l

mx = a(1 + f3xY

(7)

(8)

in which a, 13 and}' are constants which can be determined by use of the real values of the
axial stiffness at x = 0, H/2 and H as follows

1 [(KH)l/1' ]13=- - -I
H Ko

(9)

Similarly, a, 13, and c can be found as

a = mo

I [(m )1!C ]13 = H m: -I
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(10)

where mo, Ko, mH/2, KH/2, mH, KHare the mass intensity and the axial stiffness, respectively,
at x = 0, H /2, and H. H is the height of the structure considered (Fig. 1). It is worth noting
that the value of {3 determined from eqn (9) may not be equal to that of {3 calculated from
eqn (10), one can take their average as the representative value of {3.

Case B: Expressions ofmass and axial stiffness are exponential functions

(II)

(12)

The parameters ex, {3, a, b can be determined by

(13)

(14)

SOLUTIONS OF THE DIFFERENTIAL EQUATIONS

Case A
Substituting eqns (7) and (8) into eqn (5) gives

d2 X y{3 dX aui
-+--~+-(l+{3x)'~YX=0
dx2 1+{3x dx ex

Setting

2n c-y+2
~ = 2(1+{3X)-2-

c-y+

l-y
v=

c-y+2

and substituting eqn (16) into eqn (IS) gives

(IS)

(16)

(17)

The above equation is a Bessel's equation of the v-th order. The vibration mode function
for a non-integer, v can be expressed as
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mx Kx
H

x

Fig. 2. A cantilever bar with a lumped mass.

where Jv(~) is the Bessel function of the first kind of order v.
The boundary conditions of the structure shown in Fig. 2 are as follows

x = 0, X(O) = 0

x = H, KH(~0X~H = mw
2
X(H)

(18)

(19)

Substituting the above boundary conditions eqn (19) into eqn (18) gives the following
frequency equation

[
n

2
a

2
[3

2m ]J -v(N) n8BJv_ 1 (NO) + a Jv(NO)

(20)

in which m is the lumped mass attached to the top of a cantilever bar with variable cross
section (Fig. 2).

If there is no lumped mass at the top of the bar, that is, m = 0, then the frequency
equation for this case is given by

(21)

where

2n
N=--

c-y+2

c-y+2o= (1 +[3H)-z-

1 +y
B = (1 +[3H)--z

When v is an integer, the longitudinal vibration mode function becomes

(22)
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(23)

The frequency equation takes the form

or

Y,,(Ic)J"_1 ().e) = J,,().) V,,-l (Ice)

for m = 0
Ify = c+2, then eqn (IS) is reduced to an Euler's equation as follows

d 2 X dX aw2

(I +f3X)2- +yf3(1 +f3x)-d + -x = 0
dx2 X IX

The general solution of eqn (26) can be written as

(24)

(25)

(26)

x = (I + f3x) I ~y {Cl cos [JD ln(l + f3x)] +C2 sin [JD ln(l + f3x)]} (27)

Using eqn (18) and the boundary conditions, gives the mode shape function as follows

x = C2 (1 + f3x) 1~y sin [JD ln(l + f3x)]

The frequency equation is

JD JD
2f3mn2

2 Dctn[ Dln(l +f3H)] = y-l--
adJ'-1

or

2JD ctn[JD ln(l + f3H)] = y-l

for m = 0 in which

(28)

(29)

(30)

(31)

Because the case corresponding to D < 0 is meaningless, it is not considered here. The
solution presented above is called the general solution for case A. The special cases can be
found from the general solution as follows.

(I) When y = c, v = [(I-y)/2], this case is corresponding to a bar that the mass of it is
proportional to its longitudinal stiffness. In general, solid bars and some high-rise
structures belong to this case. It is called the special case 1 here.

(2) When y #- 0, c = 0, this case represents a bar with variably distributed stiffness and
uniformly distributed mass. The corresponding solution can be found from the general
solution. Some tall buildings can be considered as this case called the special case 2
here.
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Fig. 3. A cuneiform bar.

(3) When y = 0, C #- 0, the general solution becomes that ofa bar with uniformly distributed
stiffness and variably distributed mass. This case is called the special case 3.

(4) When y = °and c = 0, the general solution represents that of a uniform bar.
(5) When f3 = (1/H), the general solution becomes the solution of a wedged bar with

variably distributed stiffness and variably distributed mass (Fig. 3).

Case B
Substituting eqns (11) and (12) into eqn (5) gives

d2 X f3 dX a (f3-b)x
----+-w2 e-H-X= °
dx2 H dx (X

Setting

X= ~vZ

(f3-b)x

~=e2H

and substituting eqn (33) into eqn (32) lead to

(32)

(33)

(34)

Equation (34) is a Bessel's equation of the v-th order. The vibration mode function for a
non-integer v can be expressed as

(35)

where Jv(s~) is the Bessel function of the first kind of order v.
Using eqn (18) and the boundary conditions obtains the following frequency equation



3172 Q. S. Li et al.

[
(f3- b)sm -fi ] [(f3- b)sm -fi ]

J_t·(s) 2aH J,,(sA)+Ae J'_I(sA) = J,(s) 2aH J_,,(sA)-Ae J_('_l)(sA)

(36)

in which

f3-b
A = e-2-

When m = 0, the frequency equation becomes

If v is an integer, the vibration mode function can be expressed as

where Yv(sO is the Bessel function of the second kind of order v.
The longitudinal frequency equation is given by

(37)

(38)

(39)

[
(f3- b)sm -f3 ] - [(f3- b)sm -fi ]

Y,,(s) 2aH J,,(sA) + A e J,,_I (sA) - J,,(s) 2aH Yv(sA) + A e Yv- 1(sA)

(40)

When m = 0, the frequency equation becomes

Y,,(S)J'-l (sA) = J,,(s) Yv- 1(sA) (41)

The solution obtained from the above equation is called the general solution for case B.
The following special cases can be found from the general solution.

(l) When f3 = b, the general solution becomes that of the special case I defined above.
Equation (34) is reduced to a differential equation with constant coefficients in this
case.

(2) When f3 #- 0, C = 0, the solution of the special case 2 can be obtained from the general
solution, in this case v = I.

(3) When f3 = 0, C #- 0, the solution of the special case 3 can be obtained from the general
solution.

(4) When f3 = °and c = 0, the general solution becomes that of a uniform bar.

NUMERICAL EXAMPLE

A tall building (27 stories) which is located in Guangzhou is a shear-wall structure
with variable cross-section. Based on the full-scale measurement of free vibration of this
building (Li et al., 1994a), this building can be treated as a cantilever bar (Fig. I) in free
vibration analysis. The procedure for determining the dynamics characteristics of this tall
building with viscous damping (Co = 0.2 = critical damping ratio = ~ = 0.03) in vertical
direction is as follows:
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M=30612.2

35536.1

34663.3

36265.3

38117.1

39337.7

40877.6

41438.8
35010.2

r-- 38014.2~
Fig. 4. Mass distribution of the tall building.

1. Determination of the mass per unit length (Fig. 4)
The axial stiffness and mass per unit length (Fig. 4) of the building vary monotonically

downward with height. For simplicity, the building is treated as a cantilever bar with
variable cross-section as shown in Fig. 1. Because the variation of the mass per unit length
and the lumped mass attached at the top of the building are comparative small, it is
reasonable to assume that the mass is uniformly distributed along the height of the building
(Fig. 4).

The mass per unit length, m, is found as: m = 38,014.2 kg/M.

2. Evaluation of the axial stiffness, K" (Fig. 5)
For this example, the distributions of mass and axial stiffness per unit length along the

building height are described as power functions [eqn (7) and eqn (8)], which are given as

K, = cx(1 + f3xF

mx = a(l + f3xy

(42)

(43)

Because the mass is considered as uniformly distributed, it is suggested that c = 0 in eqn
(43). The stiffness distribution is taken as

(44)

According to the boundary conditions of this building:
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69,27XlO 9

74.42XlO 9

82.32XIO 9

91.20XIO 9

99.71X10 9

ll0,31X10 9

123.68XI0 9

133.l4XlO 9

Fig. 5. Stiffness distribution of the tall building.

atx = 0, EFa = 133.14 x 109 KN

X = H, EFH = 69.27 X 109 KN

The parameters, 0:, [3, are determined as

0: = EFa = 133.14 x 109 KN

[3 = -3.667 X 1O~3

The evaluated distribution of stiffness is shown in Fig. 5 (dotted line).

3. Evaluation of the fundamental natural frequency
The frequency equation (30) becomes

2JDctn[JDln(l+[3H)] = I

Solving the above equation gives

JD = 5.0855

The corresponding axial fundamental frequency is found from eqn (31) as follows

WI = 35.06 rad/s

fl = 5.580 Hz (the first undamped natural frequency).
Using eqn (6) gives

AI,2 = -0.05±35.03i

The first damped natural frequency is

(45)
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Table I. Longitudinal fundamental mode shape of the 27-storey building

Storey level 2 5 8 II 14 17 20 24

x!H 0 0.0704 0.2007 0.3230 0.4454 0.5678 0.6976 0.8125
Yj (x!H) measured 0 0.100 0.257 0.417 0.560 0.710 0.837 0.929
Yj(x!H) calculated (~ = 0.03) 0 0.1022 0.2687 0.4269 0.5687 0.7147 0.8475 0.9375
Y,(x!H) calculated (~ = 0) 0 0.1022 0.2687 0.4269 0.5687 0.7147 0.8475 0.9375

WI = 35.03 radjs

fl = 5.575 Hz (the first damped natural frequency).
It can be seen that the difference between the undamped frequency and damped

frequency is very small.
The longitudinal fundamental frequency obtained by full-scale measurement (Li et aI.,

1994a) is 5.47 Hz. It is clear that the computed values in terms of the proposed procedure
are in good agreement with the measured data.

If the lumped mass attached to the top of the building (M = 30,612.2 kg) is considered,
then, the axial frequency eqn (29) must be used. The calculated axial fundamental undamped
frequency is found as 5.570 Hz, and the fundamental damped frequency is 5.565 Hz.

4. Calculation of the longitudinal vibration mode shape
After computing the first natural frequency j;, the first mode shape, XI(x), can be

determined from eqn (22). The calculated results are listed in Table 1. Using the afore
mentioned procedure, the higher natural frequencies and corresponding mode shapes can
also be determined.

It can be seen from Table I that the calculated fundamental mode shapes show good
agreement with the measured mode shape. The computed model shape without including
the damping term (~ = 0) is the same as that calculated considering the damping effect
(~ = 0.03). Therefore, it can be concluded that if the distribution of damping coefficient is
assumed to be proportional to that of mass (C, = Comx ), there is no effect of damping on
the fundamental mode shape.

CONCLUSION

An approach to determine the longitudinal natural frequencies and mode shapes of
tall buildings with viscous damping, variably distributed stiffness and variably distributed
mass, which are treated as cantilever bars with variable cross-section, is proposed. The
proposed formulae for determining free longitudinal vibrations of tall buildings are simple
and convenient for engineering applications. The numerical example showed that the
calculated fundamental longitudinal natural frequency and mode shape of a 27-storey tall
building are very close to the full scale measured data, suggesting that the calculation
method proposed in this paper are applicable to engineering application and practice. The
computed results also showed that if the distribution of damping coefficient is assumed to
be proportional to that of mass (C, = Comx), the difference between the first damped
frequency and the first undamped natural frequency is very small and there is no damping
effect on the longitudinal fundamental mode shape. It has been shown through the numeri
cal example that the selected expressions are suitable for describing the distribution of
stiffness and mass of typical tall buildings. Therefore, the proposed method is applicable to
the free longitudinal vibration analysis of tall buildings with or without considering damping
effect.
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APPENDIX

The following symbols are used in this paper:

y
p(x, t)
K,
C,
X(x)
w
11("{
H

displacement in the longitudinal direction
intensity of axial force
axial stiffness
viscous damping coefficient
mode shape function
circular natural frequency
mass per unit length
height of the structure.


